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The need for adaptability in software is growing, driven in part by the
emergence of pervasive and autonomic computing. In many cases, it is desirable
to enhance existing programs with adaptive behavior, enabling them to
execute effectively in dynamic environments. In this chapter, we introduce an
innovative software engineering methodology called transparent shaping that
enables dynamic addition of adaptive behavior to existing software systems and
applications. We describe an approach to implementing transparent shaping
that combines four key software development techniques: aspect-oriented
programming to realize separation of concerns at development time, behavioral
reflection to support software reconfiguration at run time, component-based
design to facilitate independent development and deployment of adaptive
code, and adaptive middleware to encapsulate the adaptive functionality. After
presenting the general methodology, we discuss two specific realizations of
transparent shaping that we have developed and used to create adaptable
systems and applications from existing ones.

1. Introduction

A software application is adaptable if it can change its behavior
dynamically (at run time) in response to transient changes in its execution
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environment or to permanent changes in its requirements. Recent interest
in designing adaptable software is driven in part by the emergence of
pervasive computing and the demand for autonomic computing.1 Pervasive
computing promises anywhere, any time access to data and computing
resources with few limitations and disruptions.2 The need for adaptability
in pervasive computing is particularly evident at the “wireless edge” of the
Internet, where software in mobile devices must balance conflicting concerns
such as quality-of-service (QoS) and energy consumption when responding
to variability of conditions (e.g., wireless network loss rate). Autonomic
computing3 refers to self-managed, and potentially self-healing, systems
that require only high-level human guidance. Autonomic computing is
critical to managing the myriad of sensors and other small devices at
the wireless edge, but also in managing large-scale computing centers and
protecting critical infrastructure (e.g., financial networks, transportation
systems, power grids) from hardware component failures, network outages,
and security attacks.

Developing and maintaining adaptable software are nontrivial tasks.
An adaptable application comprises functional code that implements the
business logic of the application and supports its imperative behavior,
and adaptive code that implements the adaptation logic of the application
and supports its adaptive behavior. The difficulty in developing and
maintaining adaptable applications is largely due to an inherent property
of the adaptive code, that is, the adaptive code tends to crosscut the
functional code. Example crosscutting concerns include QoS, mobility,
fault tolerance, recovery, security, self auditing, and energy consumption.
Even more challenging than developing new adaptable applications is
enhancing existing applications, such that they execute effectively in new,
dynamic environments not envisioned during their design and development.
For example, many non-adaptive applications are being ported to mobile
computing environments, where they require dynamic adaptation.

This chapter describes a new software engineering methodology, called
transparent shaping, that supports the design and development of adaptable
programs from existing programs without the need to modify the existing
programs’ source code directly. We argue that automatic generation
of an adaptable program from a non-adaptable one is important to
maintaining program integrity, not only because it avoids errors introduced
by manual changes, but because it provides traceability for the adaptations
and enables the program to revert back to its original behavior if
necessary. Our approach to implementing transparent shaping combines
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four key technologies: aspect-oriented programming to enable separation
of concerns at development time, behavioral reflection to enable software
reconfiguration at run time, component-based design to enable independent
development and deployment of adaptive code, and adaptive middleware to
help insulate application code from adaptive functionality. To demonstrate
the effectiveness of this approach, we describe two realizations of
transparent shaping that we have developed and used to create adaptable
applications.

The remainder of this chapter is organized as follows. Section 2
discusses the four main components of our approach. Section 3 provides an
overview of transparent shaping and describes its relationship to program
families.4 Sections 4 and 5, respectively, describe two realizations of
transparent shaping; one is middleware-based and the other is language-
based. Section 6 discusses how transparent shaping complements other
research in adaptive software. Section 7 presents conclusions and identifies
several directions for future research.

2. Basic Elements

Transparent shaping integrates four key technologies: separation of
concerns, behavioral reflection, software components, and middleware. In
this section, we briefly review each technology and its role in transparent
shaping.

Separation of concerns5 enables the separate development of the
functional code from the adaptive code of an application. This separation
simplifies development and maintenance, while promoting software reuse.
Moreover, since adaptation often involves crosscutting concerns, this
separation also facilitates transparent shaping. In our approach, we use
aspect-oriented programming (AOP),6,7 an increasingly common approach
to implementing separation of concerns in software. While object-oriented
programming introduces abstractions to capture commonalities among
classes in an inheritance tree, crosscutting concerns are scattered among
different classes, thus complicating the development and maintenance of
applications. Conversely, in AOP the code implementing such crosscutting
concerns, called aspects, is developed separately from other parts of the
system. Later, for example during compilation, an aspect weaver can be
used to weave different aspects of the program together to form a program
with new behavior. Predefined locations in the program where aspect code
can be woven are called pointcuts.
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In traditional AOP, after compilation the aspects are tangled (via
weaving) with the functional code. To facilitate dynamic reconfiguration,
transparent shaping needs a way to enable separation of concerns to
persist into run time. This separation can be accomplished using behavioral
reflection,8 the second key technology for transparent shaping. Behavioral
reflection enables a system to “open up” its implementation details at
run time.9 A reflective system has a self representation that deals with
the computational aspects (implementation) of the system, and is causally
connected to the system. The self-representation of a reflective system is
realized by metaobjects residing in the metalevel, which is separated from
the actual system represented by objects in the base level. A metaobject is
an entity that manipulates, creates, describes, or implements other objects,
which in turn called base objects, and might store some information about
these base objects such as their type, interface, class, methods, attributes,
variables, functions, and control structures. By incorporating crosscutting
concerns associated with the system as part of its self-representation,
the resulting code at run time is not tangled and therefore can be
reconfigured dynamically. When combined with AOP, behavioral reflection
enables dynamic weaving of crosscutting concerns into an application at
run time.10

The third major technology that supports transparent shaping is
component-based design. Software components are software units that can
be independently developed, deployed, and composed by third parties.11

Well-defined interface specifications supported in component-based design
enable adaptive code to be developed independently from the functional
code, and potentially by different parties, using the interface as a contract.
Component-based design supports two types of composition. In static
composition, a developer can combine several components at compile time
to produce an application. In dynamic composition, the developer can
add, remove, or reconfigure components within an application at run time.
When combined with behavioral reflection, component-based design enables
a “plug-and-play” capability for adaptive code to be incorporated with
functional code at run time that facilitates development and maintenance
of adaptable software.

Finally, in many cases it is desirable to hide the adaptive behavior from
the application using middleware. Traditionally, middleware is intended to
mask the distribution of resources across a network and hide differences
among computing platforms and networks.12 As observed by several
researchers,13 however, middleware is also an ideal place to incorporate
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adaptive behavior for many different crosscutting concerns. Adaptive
middleware enables dynamic reconfiguration of middleware services while
an application is running, adjusting the middleware behavior to environ-
mental changes dynamically. Our approach to transparent shaping
uses adaptive middleware in two ways. In the first, transparent shaping adds
adaptive behavior to a middleware platform already supporting the
application. In the second, transparent shaping is used to weave calls to
adaptive middleware into an application.

3. General Approach

By generating adaptable programs from existing ones, transparent shaping
is intended to support the reuse of those applications in environments whose
characteristics were not necessarily anticipated during the original design
and development. Therefore, a challenge in transparent shaping is finding
a way to produce adaptable programs that share the business logic of the
original program and differ only in the new adaptive behavior.

As illustrated in Fig. 1, one way to formulate this problem is using
program families, a well-established concept in the software engineering
community. A program family4 is a set of programs whose extensive
commonalities justify the expensive effort required to study and develop
them as a whole, rather than individually. In short, transparent shaping
can be viewed as a methodology that produces a family of adaptable
programs from an existing non-adaptable program. The adaptable program
comprises the original program code that remains fixed during program
execution, and adaptive code that can be replaced with other adaptive

Fig. 1. A transparent shaping design tree illustrating a family of adaptable programs
produced from an existing program, which is the root of this tree. Children of the root
are adapt-ready programs. Other descendants are adaptable programs.
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code dynamically. Replacing one piece of adaptive code with another piece
of adaptive code converts an adaptable program into another adaptable
program in the corresponding family. This conversion is possible in this
programming model, because the adaptive code is not tangled with the
functional code. We use the term composer to refer to the entity that
performs this conversion. The composer might be a human — a software
developer or an administrator interacting with a running program through
a graphical user interface — or a piece of software — a dynamic aspect
weaver, a component loader, a run-time system, or a metaobject.

Transparent shaping produces adaptable programs in two steps. In the
first step, an adapt-ready program14 is produced at compile, startup, or
load time using static transformation techniques. An adapt-ready program
is a program whose behavior is initially equivalent to the original program,
but which can be adapted at run time by insertion or removal of adaptive
code at certain points in the execution path of the program, called sensitive
joinpoints. To support such operations, the first step of transparent shaping
weaves interceptors, referred to as hooks, at the sensitive joinpoints, which
may reside inside the program code itself, inside its supporting middleware,
or inside the system platform. Example techniques for implementing hooks
include aspects (compile time), CORBA portable interceptors15 (startup
time), and byte-code rewriting16 (load time).

In the second step, executed at run time, the hooks in the adapt-ready
program are used by the composer to convert the adapt-ready program
into an adaptable program in the corresponding subfamily, as conditions
warrant. Adapt-ready programs derived from the same existing program
differ in their corresponding sensitive joinpoints and hooks. We note that
the available hooks in an adapt-ready program limit its dynamic behavior.
In other words, each adapt-ready program can be converted to a limited
number of adaptable programs in the corresponding family. The adaptable
programs derived from an adapt-ready program form a subfamily (e.g., S1
and S2 in Fig. 1).

We use Fig. 1 to describe a specific example. Consider an existing
distributed program (X0) originally developed for a wired and secure
network. To enable this program to run efficiently in a mobile computing
environment, the first step of transparent shaping can be used to produce
an adapt-ready version of this program (X1), which has hooks intercepting
all the remote interactions. At run time, if the system detects a low
quality wireless connection, the composer can insert adaptive code for
tolerating long periods of disconnection into the adapt-ready program
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Fig. 2. Alternative places to insert hooks.

(producing X4 from X1). Later, if the user enters an insecure wireless
network, the composer can insert adaptive code for encryption/decryption
of the remote interactions into the program (producing X8 from X4).
Finally, when the user returns to an area with a secure and reliable
wireless connection, the composer can remove the adaptive code for both
security and connection-management to avoid unnecessary performance
overhead due to the adaptive code (producing X4 from X8 and X1 from
X4, respectively).

We identify three approaches to realize transparent shaping that differ
according to the placement of hooks (see Fig. 2): (1) hooks can be
incorporated inside an application program itself, (2) inside its supporting
middleware, or (3) inside the system platform (operating system and
network protocols). A number of projects on cross-layer adaptation use the
third approach.17–19 In this paper, we consider only the first two methods,
where the hooks are incorporated either inside the middleware or inside
the application. Next, we describe two concrete realizations of each type of
transparent shaping. The first, described in Section 4, is a middleware-based
approach that uses CORBA portable interceptors15 as hooks. The second,
described in Section 5, uses a combination of aspect weaving and metaobject
protocols to introduce dynamic adaptation to the application code directly.
Both realizations adhere to the general model described above.

4. Middleware-Based Transparent Shaping

The first realization of transparent shaping we describe is the Adaptive
CORBA Template (ACT),20,21 which we developed to enable dynamic
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adaptation in existing CORBA programs. CORBA was one of the first
widely used middleware platforms introduced more than 17 years ago. It is
still commonly used in numerous systems.

ACT enhances CORBA to support dynamic reconfiguration of
middleware services transparently, not only to the application code, but
also to the CORBA code itself. As a realization of transparent shaping,
ACT produces an adapt-ready version of an existing CORBA program
by introducing a hook to intercept all CORBA remote interactions.
Specifically, ACT uses CORBA portable interceptors,15 which can be
incorporated into a CORBA program at startup time using a command-line
parameter. Later at run time, these hooks can be used to insert adaptive
code into the adapt-ready program, which in turn can adapt the requests,
replies, and exceptions passing through the CORBA Object Request
Brokers (ORBs). In this manner, ACT enables run-time improvements
to the program in response to unanticipated changes in its execution
environment, effectively producing other members of the adaptable program
family dynamically.

4.1. ACT Architectural Overview

Figure 3 shows the flow of a request/reply sequence in a simple CORBA
application using ACT. For clarity, CORBA ORB details such as stubs
and skeletons are not shown. ACT comprises two main components: a

Fig. 3. ACT configuration in the context of a simple CORBA application.
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generic interceptor and an ACT core. A generic interceptor is a specialized
request interceptor that is registered with the ORB of a CORBA application
at startup time. The client generic interceptor intercepts all outgoing
requests and incoming replies (or exceptions) and forwards them to its ACT
core. Similarly, the server generic interceptor intercepts all the incoming
requests and outgoing replies (or exceptions) and forwards them to its ACT
core. A CORBA application is called adapt-ready if a generic interceptor
is registered with all its ORBs at startup time. If, in addition to the
generic interceptors, all the ACT core components are also loaded into the
application, the application is called ACT-ready. Making the application
ACT-ready can be done either at startup time or at run time.

4.2. ACT Core Components

Figure 4 shows the flow of a request/reply sequence intercepted by the
client ACT core. The components of the core include dynamic interceptors,
a proxy, a decision maker, and an event mediator. Each component is
described in turn.

Fig. 4. ACT core components interacting with the rest of the system.
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Dynamic Interceptors. According to the CORBA specification,15 a
request interceptor is required to be registered with an ORB at the
ORB initialization time. The ACT core enables registration of request
interceptors after the ORB initialization time (at run time) by publishing
a CORBA interceptor-registration service. Such request interceptors are
called dynamic interceptors. Dynamic interceptors can be unregistered
with the ORB at run time also. In contrast, a request interceptor that
is registered with the ORB at startup time is called a static interceptor and
cannot be unregistered with the ORB during run time. We note that the
code developed for a static interceptor and that for a dynamic interceptor
can be identical, the difference being the time at which they are registered.
In ACT, only generic interceptors are static.

A rule-based interceptor is a particular type of dynamic interceptor that
uses a set of rules to direct the operations on intercepted requests. The rules
can be inserted, removed, and modified at run time. A rule consists of two
objects: a condition and an action. To determine whether a rule matches
a request, a rule-based interceptor consults its condition object. Once a
match is found, the interceptor sends the request to the action object of
the rule. Since it is part of a CORBA portable interceptor, the action object
cannot itself reply to the request or modify the request parameters.15 The
action object can, however, send new requests, record statistics, or raise a
ForwardRequest exception, causing the request to be forwarded to another
CORBA object such as a proxy.

Proxies. A proxy is a surrogate for a CORBA object that provides the
same set of methods as the CORBA object. Unlike a request interceptor,
a proxy is not prohibited from replying to intercepted requests. A proxy
can reply to the intercepted request by sending a new request (possibly
with modified arguments) to either the target object or to another
object. Alternatively, a proxy can reply to the intercepted requests using
local data (e.g., cached replies). However, to enable dynamic weaving of
adaptive functionality that is common to multiple CORBA objects, ACT
needs to intercept and adapt CORBA requests, replies, and exceptions
in a manner independent of the semantics (the application logic) and
syntax (the CORBA interfaces defined in the application) of specific
applications.

The generic proxy is a particular CORBA object that is able to receive
any CORBA request (hence the label “generic”). To determine how to
handle a particular request, the generic proxy accesses the CORBA interface
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repository,15 which provides all the IDL descriptions for CORBA requests.
The repository executes as a separate process and is usually accessed
through the ORB. Most CORBA ORBs provide a configuration file or
support a command-line argument that enables the user to introduce the
interface repository to the application ORB. Providing IDL information to
the generic proxy in this manner implies no need to modify or recompile the
application source code. The interface repository, however, requires access
to the CORBA IDL files used in the application.

In default operation mode, the generic proxy intercepts CORBA
requests, acquires the request specifications from a CORBA interface
repository, creates similar CORBA requests and sends them to the original
targets, and forwards replies from those targets back to the original clients.
A generic proxy also publishes a CORBA service that can be used to register
a decision maker.

Decision Makers. A decision maker assists proxies in replying to
intercepted requests as depicted in Fig. 4. A decision maker receives requests
from a proxy and, similar to a rule-based interceptor, uses a set of rules
to direct the operation on the intercepted requests. However, unlike a rule-
based interceptor, a decision maker is not prohibited from replying to the
requests.

4.3. ACT Operation

In addition to showing the ACT core components, Fig. 4 also illustrates
the sequence of a request/reply inside the ACT core, which contains a
rule-based interceptor, a generic proxy, and a rule-based decision maker.
First, a request from the client application is intercepted by the rule-based
interceptor, which checks its rules for possible matches. A default rule,
initially inserted in its knowledge base, directs the rule-based interceptor
to raise a ForwardRequest exception, which results in its forwarding the
request to the generic proxy. When the generic proxy receives the request,
it acquires the request interface definition via the application ORB, which
in turn retrieves the information from the interface repository. The proxy
creates a new request and forwards it to the rule-based decision maker. The
rule-based decision maker checks its knowledge base for possible matches
to the request. Depending on the implementation of the rules, the decision
maker may return either a modified request to the generic proxy or a reply
to the request. If the decision maker returns the request (or a modified
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request), then the generic proxy will continue its operation by invoking the
request. If the reply to the request is returned by the decision maker, then
the proxy replies to the original request using the reply from the decision
maker. The generic proxy uses the CORBA dynamic skeleton interface
(DSI)15 to receive any type of request. The generic proxy and the rule-
based decision maker use the CORBA dynamic invocation interface (DII)15

to create and invoke a new request dynamically.

4.4. ACT/J Implementation

We have developed an instance of ACT in Java, called ACT/J, to evaluate
ACT in practice. ACT/J was tested over ORBacus,22 a CORBA-compliant
ORB distributed by IONA Technologies. ORBacus,22 like JacORB,23

TAO,24 and many other CORBA ORBs, supports CORBA portable
interceptors,15 which is the only requirement for using ACT.

To make a CORBA application ACT-ready at the application startup
time, we need to resolve the following bootstrapping issues. First, we need
to register a generic interceptor with the application ORB. Like many other
ORBs, ORBacus uses a configuration file that enables an administrator to
register a CORBA portable interceptor with the application ORB. JacORB
and TAO use a similar approach. Second, since the components in the
ACT core are also CORBA objects, they require an ORB to support their
operation (registration of services, and so on). Therefore, we need either to
obtain a reference to the application ORB for this purpose, or to create a
new ORB. ORBacus does provide such a reference, although the CORBA
specification does not support this feature. To implement ACT/J over an
ORB that does not provide such a reference, we simply create a new ORB,
although its use introduces additional overhead.

To test the operation of ACT/J, we developed two administrative
consoles: the Interceptor Registration Console and the Rule Management
Console. Please note that in this study the composer is assumed to be
a human, who performs dynamic adaptation using the administrative
consoles. The Interceptor Registration Console enables a user to manually
register a dynamic interceptor. This console first obtains a generic
interceptor name from the user and checks if the generic interceptor is
registered with the CORBA naming service. Next, the user can register a
dynamic interceptor with the generic interceptor. The Rule Management
Console allows a user to manually insert rules into rule-based interceptors.
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4.5. ACT/J Case Study

To evaluate the effectiveness of ACT/J to support self-management in
existing CORBA applications, without modifying the application code, we
conducted a case study in which self-optimization is enabled in an existing
application. Additional experiments involving IP handoff, are described in
an accompanying technical report.25 We begin with a brief overview of the
application and the experimental environment, followed by the description
of the experiment. The experiment shows how ACT/J could be used to
support autonomic computing in either a generic or application-specific
manner.

For the application, we adopted an existing distributed image retrieval
application developed by BBN Technologies.26 The application has two
parts, a client that requests and displays images, and a server that stores
the images and replies to requests for them. In this study, we treat the
application as though it were used for surveillance, with a mobile user
executing the client code on a laptop and monitoring a physical facility
through continuous still images from multiple camera sources. For the
experiment described later in this section, we executed the server on a
desktop computer connected to a 100 Mbps wired network and the client on
a laptop computer connected to a three-cell 802.11b wireless network. Both
the desktop and laptop systems are running the Linux operating system.

Figure 5 shows the physical configuration of the three access points used
in the experiment. (The wireless cells are drawn as circles for simplicity —
the actual cell shapes are irregular, due to the physical construction of the
building and orientation of antennas.) AP-1 and AP-3 provide 11 Mbps
connections, whereas AP-2 provides only 2 Mbps. The desktop running the
server application is close to AP-1. AP-1 and AP-2 are managed by our
Computer Science and Engineering Department, whereas AP-3 is managed
by the College of Engineering. This difference implies that the IP address
assigned to the client laptop needs to change as the user moves from a CSE
wireless cell to a College cell. The server provides four different versions of
each image, varying in size and quality. Typical comparative file sizes are
90KB, 25KB, 14KB, and 4KB.

To investigate how ACT/J can support self-management, we developed
an application-specific rule that maintains the frame rate of the application
by controlling the image size or inserting inter-frame delays dynamically.
The original image retrieval application operates in a default mode, which
retrieves and plays images as fast as possible. ACT/J enables a developer
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Fig. 5. The configuration of the access points used in the experiment.

to weave the rule into the application at run time, thereby providing
new functionality (frame rate control) transparently with respect to the
application. The self-optimization rule maintains the frame rate of the
application in the presence of dynamic changes to the wireless network
loss rate, the network (wired/wireless) traffic, and CPU availability.

We developed a user interface, called the Automatic Adaptation
Console, which displays the application status and also enables the user
to enter quality-of-service preferences (see Fig. 6). The rule uses several
parameters to decide on when and how to adapt the application in order
to maintain the frame rate. These parameters have default values as
shown in the figure, but can be modified at run time by the user. The
Average Frame Rate Period indicates the period during which the average
frame rate should be calculated to be considered for adaptation. The
Stabilizing Period specifies the amount of time that the rule should wait
until the last adaptation stabilizes; also if a sudden change occurs in the
environment such as hand-off from one wireless cell to another one, then
the system should wait for this period before it decides on the stability of
the system. The rule detects a stable situation using the Acceptable Rate

Deviation; when the frame rate deviation goes below this value, the system
is considered stable. Similarly, the rule detects an unstable situation, if
the instantaneous frame rate deviation goes beyond the Unacceptable Rate

Deviation value. The rule also maintains a history of the round-trip delay
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Fig. 6. Automatic Adaptation Console.

associated with each request in each wireless cell. Using this history and the
above parameters, the rule can decide to maintain the frame rate either by
increasing/decreasing the inter-frame delay or by changing the request to
ask for a different version of the image with smaller/larger size. The default
behavior of the rule is to display images that are as large as possible, given
the constraints of the environment.

Figure 7 shows a trace demonstrating automatic adaptation of the
application in the following scenario. In this experiment, the user has
selected a desired frame rate of 2 frames per second, as shown in Fig. 6. For
the first 60 seconds of the experiment, the user stays close to the location
A (Fig. 5). The rule detects that the desired frame rate is lower than the
maximum possible frame rate, based on observed round-trip times. Hence,
it inserts an inter-frame delay of approximately 200 milliseconds to maintain
the frame rate at about 2 frames per second. At point 120 seconds, the user
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Frame Rate Using Automatic Adaptation
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Fig. 7. Maintaining the application frame rate using automatic adaptation.

starts walking from location A to location B for 60 seconds. The automatic
adaptation rule maintains the frame rate by decreasing the inter-frame
delay during this period. At point 180 seconds, the user begins walking
from location B to location C and back again, returning to location B
at 360 seconds. During this period, because the AP-2 access point provides
2 Mbps, the automatic adaptation rule detects that the current frame rate is
lower than that desired. It first removes the inter-frame delay, but the frame
rate does not reach to 2 frames per second. Therefore, it reduces the quality
of the image by asking for a smaller image size. Now the frame increases
beyond that desired, so the automatic adaptation rule inserts an inter-frame
delay of 400 milliseconds to maintain the frame rate at 2 frames per second.
Although there is some oscillation, the rate stabilizes by time 360 seconds.
At this point, the user continues walking from location B to location A,
prompting the rule to reverse the actions. First the inter-frame delay is
increased to maintain the frame rate, followed by an increase in image
size. In this manner, the rule brings the application back to its original
behavior. Again, because the current frame rate is higher than expected,
an inter-frame delay of about 200 milliseconds is inserted to maintain the
frame rate at 2 frames per second.

This result is promising and demonstrates that it is possible to add self-
management behavior to an application transparently to the application
code. Moreover, the use of a generic proxy enables self-optimization
functionality, both application-independent and application-specific, to be
added to the application, even at run time.
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As a middleware-based realization of transparent shaping, ACT can
be used to produce families of adaptable programs from existing CORBA
programs, without the need to modify or recompile their source code. Using
the generic interceptor as a hook inside middleware at startup time, ACT
enables independent development and deployment of adaptive code from
the application code at run time. In ACT, adaptive code are realized as
software components (rules and proxies) that can be deployed inside the
ACT core dynamically. By allowing dynamic insertion and removal of such
adaptive code, ACT enables dynamic conversion of an adapt-ready CORBA
program to different adaptable programs in its corresponding program
subfamily.

5. Language-Based Transparent Shaping

Although transparent shaping can be realized by incorporating hooks inside
middleware, as in ACT, many programs do not use middleware explicitly.
In this section, we introduce TRAP (Transparent Reflective Aspect
Programming),27 a language-based realization of transparent shaping that
supports dynamic adaptation in existing programs developed in class-
based, object-oriented programming languages. TRAP uses generative
techniques to create an adapt-ready application, without requiring any
direct modifications to the existing programs.

With TRAP, the developer selects at compile time a subset of classes
in the existing program that are to be reflective at run time. We say a
class is reflective at run time if its behavior (e.g., the implementation
of its methods) can be inspected and modified dynamically. Since many
object-oriented languages, such as Java and C++, do not support such
functionality inherently, TRAP uses generative techniques to produce an
adapt-ready program with hooks that provide the reflective facilities for the
selected classes. As the adapt-ready program executes, new behavior can
be introduced to the program by insertion and removal of adaptive code
via interfaces to the reflective classes.

5.1. TRAP/J Architectural Overview

We developed TRAP/J, a prototype instantiation of TRAP for Java
programs.27 The operation of the first step, converting an existing Java
program into an adapt-ready program, is depicted in Fig. 8. We assume
that the .java source files of the original application are not available. The
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Fig. 8. TRAP/J operation at compile time.

compiled class files (.class files) of the application and a configuration
file containing a list of class names (the ones selected to be reflective)
are input to an Aspect Generator and a Reflective Class Generator. For
each class name in the list, these generators produce one aspect, one
wrapper-level class, and one metalevel class. Next, the generated aspects
and reflective classes, along with the original application compiled class files,
are passed to the AspectJ compiler (ajc),28 which weaves the generated and
original application code together to produce an adapt-ready application.
The second step occurs at run time, when new behavior can be introduced
to the adapt-ready application using the wrapper- and meta-level classes
(also referred to as the adaptation infrastructure). Specifically, the interface
of the metalevel class includes services that enable methods of the wrapper-
level class to be overridden at run time with new implementations, called
delegates.

Figure 9 illustrates the interaction among the Java Virtual Machine
(JVM) and the administrative consoles (GUI). First, the adapt-ready
application is loaded by the JVM. At the time each metaobject is
instantiated, it registers itself with the Java rmiregistry using a unique
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Fig. 9. TRAP/J run-time support.

ID. Next, if an adaptation is required, the composer dynamically adds new
code to the adapt-ready application at run time, using Java RMI to interact
with the metaobjects. As part of the behavioral reflection provided in the
adaptation infrastructure, a metaobject protocol (MOP) is supported in
TRAP/J that allows interception and reification of method invocations
targeted to objects of the classes selected at compile time to be adaptable.

5.2. TRAP/J Run-Time Model

To illustrate the operation of TRAP/J, let us consider a simple application
comprising two classes, Service and Client, and three objects, (client, s1,
and s2). Figure 10 depicts a simple run-time class graph for this application
that is compliant with the run-time architecture of most class-based object-
oriented languages. The class library contains Service and Client classes, and
the heap contains client, s1, and s2 objects. The “instantiates” relationship
among objects and their classes are shown using dashed arrows, and the
“uses” relationships among objects are depicted with solid arrows.

Figure 11 illustrates a layered run-time class graph model for this
application. Please note that the base-level layer depicted in Fig. 11 is
equivalent to the class graph illustrated in Fig. 10. For simplicity, only the
“uses” relationships are represented in Fig. 11. The wrapper level contains
the generated wrapper classes for the selected subset of base-level classes
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Fig. 10. A simplified run-time class graph.

Fig. 11. TRAP layered run-time model.

and their corresponding instances. The base-level client objects use these
wrapper-level instances instead of base-level service objects. As shown,
s1 and s2 no longer refer to objects of the type Service, but instead refer to
objects of type ServiceWrapper class. The metalevel contains the generated
metalevel classes corresponding to each selected base-level class and their
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corresponding instances. Each wrapper class has exactly one associated
metalevel class, and associated with each wrapper object can be at most
one metaobject. In this way, the behavior of each object in response to each
message is dynamically programmable, using the generic method execution
MOP provided in TRAP/J.

Finally, the delegate level contains adaptive code that can dynamically
override base-level methods that are wrapped by the wrapper classes.
Adaptive code is introduced into TRAP/J using delegate classes. A delegate
class can contain implementation for an arbitrary collection of base-
level methods of the wrapped classes, enabling the localization of a
crosscutting concern in a delegate class. A composer can program
metaobjects dynamically to redirect messages destined originally to base-
level methods to their corresponding implementations in delegate classes.
Each metaobject can use one or more delegate instances, enabling different
crosscutting concerns to be handled by different delegate instances.
Moreover, delegates can be shared among different metaobjects, effectively
providing a means to support dynamic aspects.

For example, let us assume that we want to adapt the behavior
of a socket object (instantiated from a Java socket class such as the
Java.net.MulticastSocket class) in an existing Java program at run time. First,
at compile time, we use TRAP/J generators to generate the wrapper and
metaobject classes associated with the socket class. Next, at run time, a
composer can program the metaobject associated with the socket object
to support dynamic reconfiguration. Programming the metaobject can be
done by introducing a delegate class to the metaobject at run time. The
metaobject then loads the delegate class, instantiates an object of the
delegate class, intercepts all subsequent messages originally targeted to the
socket object, and forwards the intercepted messages to the delegate object.
Let us assume that the delegate object provides a new implementation
for the send() method of the socket class. In this case, all subsequent
messages to the send() method are handled by the delegate object and the
other messages are handled by the original socket object. Alternatively, the
delegate object could modify the intercepted messages and then forward
them back to the socket object, resulting in a new behavior. TRAP/J allows
the composer to remove delegates at run time, bringing the object behavior
back to its original implementation. Thus, TRAP/J is a non-invasive29

approach to dynamic adaptation.
In an earlier study,27 we developed a delegate that effectively allows

selected Java sockets in an existing program to be replaced with adaptable



February 9, 2011 10:31 9in x 6in b968-ch04 Adaptive Control Approach for Software. . . FA

98 S. M. Sadjadi, P. K. McKinley and B. H. C. Cheng

communication middleware components called MetaSockets. A MetaSocket
is created from existing Java socket classes, but its structure and behavior
can be adapted at run time in response to external stimuli such as
dynamic wireless channel conditions. Specifically, data sent or received on
the socket is passed through a pipeline of filters. A MetaSocket itself can
be reconfigured dynamically in its filter pipeline. The filter pipeline can be
reconfigured dynamically, that is, filters can be inserted and removed, in
response to changes in changing conditions. Moreover, the filter components
can be developed by third parties and can be independent of the functional
code of an application. Using TRAP/J and MetaSockets, we demonstrated
how to transform existing network applications into adaptive applications
that can better tolerate dynamic conditions on wireless networks.27

5.3. TRAP/J Case Study

To demonstrate how TRAP/J can be used to produce adaptable programs
from an existing program without the need to modify the existing program
source code directly, we use the Audio Streaming Application, called ASA,
that is designed to stream interactive audio from a microphone at one
network node to multiple receiving nodes. The original application was
developed for wired networks. Our goal is to adapt this application to
wireless environments, where the packet loss rate is dynamic and location
dependent.

In this case study, we configured the experiments in an ad hoc wireless
network as illustrated in Fig. 12. A laptop workstation transmits an audio
stream to multiple wireless iPAQs over an 802.11b (11 Mbps) ad hoc
wireless local area network (WLAN). Please note that unlike in wired
networks, in wireless networks factors such as signal strength, interference,

Fig. 12. Audio streaming in a wireless LAN.
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Fig. 13. Adaptation strategy.

and antenna alignment produce dynamic and location-dependent packet
losses. In current WLANs, these problems affect multicast connections more
than unicast connections, since the 802.11b MAC layer does not provide
link-level acknowledgements for multicast frames.

Figure 13 illustrates the strategy we used to enable ASA to adapt to
variable channel conditions in wireless networks. However, we used TRAP/J
to modify ASA transparently such that it uses MetaSockets instead of Java
multicast sockets. The particular MetaSocket adaptation used here is the
dynamic insertion and removal of forward-error correction (FEC) filters.30

Specifically, an FEC encoder filter can be inserted and removed dynamically
at the sending MetaSocket, in synchronization with an FEC decoder being
inserted and removed at each receiving MetaSocket. Use of FEC under
high packet loss conditions reduces the packet loss rate as observed by
the application. Under low packet loss conditions, however, FEC should be
removed so as not to waste bandwidth on redundant data.

Making ASA Adapt-Ready. Figure 14 shows excerpted code for the
original Sender class. The main method creates a new instance of the Sender

class and calls its run method. The run method first creates an instance of
AudioRecorder and MulticastSocket and assigns them to the instance variables,
ar and ms, respectively. The multicast socket (ms) is used to send the
audio datagram packets to the receiver applications. Next, the run method
executes an infinite loop that, for each iteration, reads live audio data and
transmits the data via the multicast socket.
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1 public class Sender
2 {
3 AudioRecorder ar;
4 MulticastSocket ms;
5 public void run()
6 { . . .
7 ar = new AudioRecorder(. . . );
8 ms = new MulticastSocket();
9 byte[] buf = new byte[500];

10 DatagramPacket packetToSend =
11 new DatagramPacket(buf, buf.length,
12 target address, target port);
13 while (!EndOfStream)
14 {
15 ar.read(buf, 0, 500);
16 ms.send(packetToSend);
17 } // end while . . .
18 }
19 } // end Sender

Fig. 14. Excerpted code for the Sender class.

Compile-Time Actions. The Sender.java file and a file containing only
the java.net.MulticastSocket class name are input to the TRAP/J aspect
and reflective generators. The TRAP/J class generators produce one
aspect file, named Absorbing MulticastSocket.aj (for base-level), and two
reflective classes, named WrapperLevel MulticastSocket.java (wrapper level)
and MetaLevel MulticastSocket.java (metalevel). Next, the generated files and
the original application code are compiled using the AspectJ compiler (ajc)
to produce the adapt-ready program. We note that if ajc could accept .class

files instead of .java files, then we would not even need the original source
code in order to make the application adapt-ready.

Generated Aspect. The aspect generated by TRAP/J defines an
initialization pointcut and the corresponding around advice for each
public constructor of the MulticastSocket class. An around advice causes
an instance of the generated wrapper class, instead of an instance of
MulticastSocket, to serve the sender. Figure 15 shows excerpted code
for the generated Absorbing MulticastSocket aspect. This figure shows the
“initialization” pointcut (lines 3–4) and its corresponding advice (lines 6–
11) for the MulticastSocket constructor used in the Sender class. Referring
back to the layered class graph in Fig. 11, the sender (client) uses an instance
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1 public aspect Absorbing MulticastSocket
2 {
3 pointcut MulticastSocket() :
4 call(java.net.MulticastSocket.new()) && . . . ;
5
6 java.net.MulticastSocket around()
7 throws java.net.SocketException
8 : MulticastSocket()
9 {

10 return new WrapperLevel MulticastSocket();
11 }
12
13 pointcut MulticastSocket int(int p0) :
14 call(java.net.MulticastSocket.new(int))
15 && args(p0) && . . . ;
16
17 // Pointcuts and advices around the nal public methods
18 pointcut getClass(WrapperLevel MulticastSocket
19 targetObj) :
20 . . . ;
21 }

Fig. 15. Excerpted generated aspect code.

of the wrapper class instead of the base class. In addition to handling public

constructors, TRAP/J also defines a pointcut and an around advice to
intercept all public final and public static methods.

Generated Wrapper-Level Class. Figure 16 shows excerpted code for
the WrapperLevel MulticastSocket class, the generated wrapper class for the
MulticastSocket. This wrapper class extends the MulticastSocket class. All the
public constructors are overridden by passing the parameters to the super
class (base-level class) (lines 4–6). Also, all the public instance methods are
overridden (lines 8–29).

To better explain how the generated code works, we step through
the details of how the send method is overridden, as shown in Fig. 16.
The generated send method first checks whether the metaObject variable,
referring to the metaobject corresponding to this wrapper-level object, is
null (lines 11–12). If so, then the base-level (super) method is called, as if the
base-level method had been invoked directly by another object, such as an
instance of sender. Otherwise, a message containing the context information
is dynamically created using Java reflection and passed to the metaobject
(metaObject) (lines 14–28). It might be the case that a metaobject may need
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1 public class WrapperLevel MulticastSocket extends
2 MulticastSocket implements WrapperLevel Interface {
3
4 // Overriding the base-level constructors.
5 public WrapperLevel MulticastSocket()
6 throws SocketException { super(); }
7
8 // Overriding the base-level methods.
9 public void send(java.net.DatagramPacket p0)

10 throws IOException {
11 if(metaObject == null)
12 { super.send(p0); return; }
13 . . .
14 Class[] paramType = new Class[1];
15 paramType[0] = java.net.DatagramPacket.class;
16 Method method = WrapperLevel MulticastSocket.
17 class.getDeclaredMethod(“send”, paramType);
18
19 Object[] tempArgs = new Object[1];
20 tempArgs[0] = p0;
21 ChangeableBoolean isReplyReady =
22 new ChangeableBoolean(false);
23
24 try {
25 metaObject.invokeMetaMethod
26 (method, tempArgs, . . . );
27 } catch (java.io.IOException e) { throw e; }
28 catch (MetaMethodIsNotAvailable e) {}
29 }

Fig. 16. Excerpted generated wrapper code.

to call one or more of the base-level methods. To support such cases, which
we suspect might be very common, the wrapper-level class provides access
to the base-level methods through the special wrapper-level methods whose
names match the base-level method names, but with an “Orig ” prefix.

Generated Metalevel Class. Figure 17 shows excerpted code for
MetaLevel MulticastSocket, the generated metalevel class for Multicast-
Socket. This class keeps an instance variable, delegates, which is of type
Vector and refers to all the delegate objects associated with a metaobject
that implements one or more of the base-level methods. To support
dynamic adaptation of the static methods, a metalevel class provides the
staticDelegates instance variable and its corresponding insertion and removal
methods (not shown). Delegate classes introduce new code to applications
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1 public class MetaLevel MulticastSocket
2 extends UnicastRemoteObject
3 implements MetaLevel Interface,DelegateManagement{
4
5 private Vector delegates = new Vector();
6 public synchronized void insertDelegate
7 (int i, String delegateClassName)
8 throws RemoteException { . . . }
9 public synchronized void removeDelegate(int i)

10 throws RemoteException { . . . }
11
12 public synchronized Object invokeMetaMethod
13 (Method method, Object[] args,
14 ChangeableBoolean isReplyReady) throws Throwable{
15 // Finding a delegate that implements this method
16 . . .
17 if(!delegateFound) // No meta-level method available
18 throw new MetaMethodIsNotAvailable();
19 else
20 return newMethod.invoke(delegates.get(i-1),
21 tempArgs);
22 }

Fig. 17. Excerpted generated metaobject code.

at run time by overriding a collection of base-level methods selected from
one or more of the adaptable base-level classes. An adaptable base-level class
has corresponding wrapper- and metalevel classes, generated by TRAP/J
at compile time. Metaobjects can be programmed dynamically by inserting
or removing delegate objects at run time. To enable a user to change the
behavior of a metaobject dynamically, the metalevel class implements the
DelegateManagement interface, which in turn extends the Java RMI Remote

interface (lines 5–10). A composer can remotely “program” a metaobject
through Java RMI. The insertDelegate and removeDelegate methods are
developed for this purpose.

The metaobject protocol developed for metalevel classes defines only
one method, invokeMetaMethod, which first checks if any delegate is
associated with this metaobject (lines 12–22). If not, then a MetaMethod-

IsNotAvailable exception is thrown, which eventually causes the wrapper
method to call the base-level method as described before. Alternatively,
if one or more delegates is available, then the first delegate that overrides
the method is selected, a new method on the delegate is created using Java
reflection, and the method is invoked.
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Adapting to Loss Rate. To evaluate the TRAP/J-enhanced audio
application, we conducted two sets of experiments similar to those in the
previous section. The configuration used in these sets of experiments is
illustrated in Fig. 12.

In the first sets of experiments, a user holding a receiving iPAQ
handheld computer is walking within the wireless cell, receiving and playing
a live audio stream. Figure 18 shows a sample of the results. For the first
120 seconds, the program has no FEC capability. At 120 seconds, the user
walks away from the sender and enters an area with loss rate around 30%.
The adaptable application detects the high loss rate and inserts a (4, 2)
FEC filter, which greatly reduces the packet loss rate as observed by the
application, and improves the quality of the audio as heard by the user. At
240 seconds, the user approaches the sender, where the network loss rate is
again low. The adaptable application detects the improved transmission and
removes the FEC filters, avoiding the waste of bandwidth with redundant
packets. Again at 360 seconds, the user walks away from the sender,
resulting in the insertion of FEC filters. This experiment demonstrates the
utility of TRAP/J to transparently and automatically enhance an existing
application with new adaptive behavior.

Balancing QoS and Energy Consumption. In the second set of
experiments, we used two MetaSocket filters, SendNetLossDetector and
RecvNetLossDetector, which cooperate to monitor the raw loss rate of the
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Fig. 18. The effect of using FEC filters to adapt ASA to high loss rates on a wireless
network.
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wireless channel. Similarly, the SendAppLossDetector and RecvAppLossDetector

filters are used to monitor the packet loss rate as observed by the
application, which may be lower than the raw packet loss rate due to the
use of FEC. At present, a simple state machine is used by a decision maker
(DM) component to govern changes in filter configuration. For example, if
the loss rate observed by the application rises above a specified threshold,
then the DM decides to insert an FEC filter in the pipeline. In case an FEC
filter is already present in the pipeline, DM decides to modify the (n, k)
parameters of the FEC filter to increase improve QoS. On the other hand,
if the raw packet loss rate on the channel drops below a lower threshold,
then the level of redundancy is decreased by modifying the parameters
of the FEC filter, or in case the FEC filter is not required anymore, DM
removes the FEC filter entirely.

Figure 19 shows a trace of an experiment using the ASA described
earlier, running in ad hoc mode. A stationary user speaks into a laptop
microphone, while another user listens on an iPAQ as he changes his
location in the wireless cell over a period of time. In this particular test, the
iPAQ user remains in a low packet loss area for approximately 30 minutes,
moves to a high packet loss area for another 40 minutes, moves back to
the low packet loss location for another 30 minutes, and then re-enters the
high packet loss location. The user remains there until the iPAQ’s external
battery drains and the network is disconnected.

Loss Rate Status

0

10

20

30

40

50

60

70

80

90

100

1 9 17 25 33 41 49 57 65 73 81 89 97 10
5

11
3

12
1

12
9

13
7

14
5

15
3

16
1

Total Battery Life Time (minutes)

Lo
ss

 R
at

e 
(%

)

Network Loss Rate Application Loss Rate

Fig. 19. MetaSocket packet loss behavior with dynamic FEC filter insertion
and removal.
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Fig. 20. Trace of energy consumption during experiment using a software measurement
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In this experiment, the upper threshold for the RecvAppLossDetector to
generate an UnAcceptableLossRateEvent is 20%, and the lower threshold for
the RecvNetLossDetector to generate an AcceptableLossRateEvent is 5%. As
shown in Fig. 19, the FEC (4, 2) code is effective in reducing the packet
loss rate as observed by the application. Figure 20 plots the remaining
battery capacity as measured during the above experiment and that for a
non-adaptive trace. The adaptive version extends the battery lifetime by
approximately 27 minutes.

In summary, TRAP enables production of adaptable program
families from existing programs developed in class-based, object-oriented
programming languages. Using the wrapper- and metalevel classes as hooks
instrumented inside the application code at compile time, TRAP enables
separate development and deployment of adaptive code in existing programs
at run time. In TRAP, pieces of adaptive code are realized as delegates
that can be inserted into and removed from an adapt-ready program
dynamically, thereby converting the adapt-ready program to adaptable
programs in its corresponding program subfamily.

6. Discussion

Figure 21 summarizes the current status of transparent shaping realizations.
We have implemented and tested ACT/J and TRAP/J, as described above.
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Fig. 21. Transparent shaping status.

We have also developed several core assets for supporting transparent
shaping, including examples of hooks, adaptive code, and existing
applications. The hooks in TRAP/J are pairs of wrappers and metaclasses,
which are generated by TRAP/J generators automatically. In ACT/J, there
is only one hook, the generic portable interceptor, which can be reused in
any CORBA program. Adaptive code in TRAP/J is realized by delegates.
A reusable delegate using MetaSockets and filters is provided. A generic
proxy was developed for ACT/J that can be used in any existing CORBA
application. The generic proxy can receive any CORBA request and can
adapt it using adaptive code realized by rules.

We are currently addressing several other aspects of transparent
shaping. To support existing programs developed in C++, .NET, and
BPEL, members of our group have already implemented TRAP/C++31

using compile-time metaobject protocols supported by Open C++,32

TRAP.NET33 using a combination of reflective capabilities in C# and
Microsoft common intermediate language (CIL), and TRAP/BPEL34 by
wrapping the invocations and forwarding them to a local generic proxy
developed in Java, respectively. To support CORBA programs developed
using C++ ORBs, we plan to develop ACT/C++. We are also investigating
techniques to support the insertion of hooks for adaptation into the
operating system kernel,19 the third case mentioned earlier.

Transparent shaping complements other work in adaptive software,
particularly adaptive middleware. Figure 22 depicts this relationship,
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Fig. 22. Relationship of transparent shaping to other contributions.

according to Schmidt’s four-layer middleware taxonomy.35 Please note
that the frameworks mentioned inside the transparent shaping boundary
can be incorporated into existing applications transparently, while the
ones outside this boundary require explicit calls from the application
source code. As in our work with TRAP/J and MetaSockets, transparent
shaping can enable existing non-adaptive applications to take advantage
of adaptive host-infrastructure middleware services such as MetaSockets.
Also, using our ACT/J framework, transparent shaping can enable existing
CORBA applications to take advantage of adaptive common middleware
services such as QuO. In addition, we note that many adaptive frameworks
developed by other groups can be used to support transparent shaping.
Examples include Composition Filters,36 RNTL ARCAD,10 Interoperable
Replication Logic,37 FTS,38 TAO Load Balancing,39 Iguana/J,40 Prose,41

Guaranà,42 Eternal,43 and Rocks/Racks.44 Previously, we provided a
summary of these and several other techniques.1

Finally, we note that transparent shaping has potential impact
beyond supporting adaptation in individual programs, for example, to
support application integration.45 To integrate two existing heterogeneous
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applications, possibly developed in different programming languages and
targeted to run on different platforms, one needs to convert data and
commands between the two applications on an ongoing basis. Transparent
shaping offers a solution to this problem, without the need to modify
application source code directly. In preliminary studies,45,46 we have
proposed several alternative architectures and showed how transparent
shaping can support interoperability, via Web services, for Java RMI,
CORBA, and .NET applications. As a proof of concept, we have conducted
a case study that demonstrates the use of transparent shaping in the
integration of an image retrieval application developed in CORBA with
a frame grabber application developed in .NET.

7. Conclusions and Future Work

Transparent shaping supports reuse of existing programs in new, dynamic
environments even though the specific characteristics of such new
environments were not necessarily anticipated during the original design
of the programs. In particular, many existing programs, not designed to be
adaptable, are being ported to dynamic wireless environments, or hardened
in other ways to support pervasive and autonomic computing. We have
described an approach to transparent shaping based on the concept of
program families and demonstrated how automated methods can be used to
transform a program into another member of the same family. Our approach
integrates four key technologies: aspect-oriented programming, behavioral
reflection, component-based programming, and adaptive middleware. We
highlighted two different realizations of transparent shaping, ACT and
TRAP, and showed how they realize the general adaptive programming
model. In addition to our work on other realizations of transparent shaping,
as well as application integration, we are also addressing several other
aspects of transparent shaping: coordination of adaptive behavior across
system layers and among different systems, formal techniques to ensure that
adaptations leave the system in a consistent state,47 preventing adaptation
mechanisms from being exploited by would-be attackers, and constructing
“product lines” of adaptable software.
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